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Abstract

An analysis has been performed to study the First and Second laws (of thermodynamics) characteristics of flow and heat transfer inside &
vertical channel made of two parallel plates under the action of transverse magnetic field. Combined free and forced convection inside the
channel is considered. Flow is assumed to be steady, laminar, fully developed of electrically conducting, and heat-generating/absorbing
fluid. Both vertical walls are kept isothermal at the same or different temperatures. Governing equations in Cartesian coordinates are
first simplified and solved analytically to develop the expressions for velocity and temperature, entropy generation( Ny ksend
irreversibility distribution ratio. Velocity, temperature, and entropy generation profiles are presented graphically. Full form of the governing
equations are solved numerically using control-volume based finite volume method. Based on the numerical calculations, average entropy
generation numbers are calculated for channels with different aspect ratios. Finally, a correlation is proposed which essentially expedite for
calculating a geometric parametefs) that will be characterized by minimum irreversibility at a particular valu&gfRe (ratio of Grashof
number and Reynolds number) amtl(Hartmann number).
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1. Introduction presence of magnetic field. Oreper and Szekely [6] analyzed
the buoyancy driven flow in a rectangular cavity under the

A Combined free and forced Convection ﬂOW Of an aCtion Of eXtel’nally imposed magnetic f|e|d AlbOUSSiere
electrically conducting and heat-generating/absorbing fluid €t al. [7] did an asymptotic analysis to study the buoyancy
in a channel in the presence of a transverse magneticdriven convection in a uniform magnetic field. For closed
field is of special technical significance because of its geometry, Garandet et al. [8] studied the problem of free
frequent occurrence in many industrial applications such asconvective flow in a rectangular enclosure in the presence
geothermal reservoirs, cooling of nuclear reactors, thermal of transverse magnetic field. For rectangular vertical duct,
insulation, and petroleum reservoirs. This type of problem Hunt [9] and Buhler [10] analyzed the fluid flow problem
also arises in electronic packages, micro electronic devicesin magnetic field with or without buoyancy effect. For
during their operations. conducting fluid, Shercliff [11] analyzed the fluid flow

In the absence of magnetic field, references [1-3] will characteristics in a pipe under transverse magnetic field. For
give some ideas about fluid flow and thermal characteristics an infinite vertical plate, Raptis and Kafoussias [12] studied
inside a vertical channel with symmetrical or asymmetrical the flow and heat transfer characteristics in the presence
thermal boundary condition. Sparrow and Cess [4] and of porous medium and magnetic field. Later Raptis [13]
Riley [5] studied buoyancy induced flow and transport in the extended the vertical plate problem to a vertical channel

problem in the presence of magnetic field. For unsteady
r— _ flow, Pan and Li [14] studied magnetohydrodynamic mixed

E?J;fgggrgi?%g%u d_shohel@yahoo.com (S. Mahmud), convection in a vertical channel and Chamkha [15] reported
shtasnime@engmail.uwaterloo.ca (S.H. Tasnim), the unsteady natural convection in a porous channel in the
mahmamun@engmail.uwaterloo.ca (M.A.H. Mamun). presence of magnetic field. For other geometry, Vajravelu
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Nomenclature
Bo magnetic induction................. Wh—2 X dimensionless axial distance
Cp specificheat................... kg~t.K-1 y transversedistance ....................... m
Ec Eckert number=v2-Gr2. w=2.C,t- AT? Y dimensionless transverse distance
g gravitational acceleration.............. -gTP Greek symbols
Gr grashof numbek= g--AT -w3/v? o »
k thermal conductivity ............ wh-1.K-1 o thermal diffusivity ................... s
M Hartmann numbek: Bow~/a/(pv) o aspect ratio= L /w o "
Ny entropy generation numbes, §" /" B thermal expansion coefficient......... .%».{st—l
Nsay ~ average entropy generation number v kinematic viscosity .................. 5
P fluiddensity ................. ... .. kg~

p Pressure. ..ot i, Pa fluid electrical conductivit o-1.m-1
P dimensionless pressure ;r_[ uid e ?C ;Eapcon [;Jcogn Yo -m
Pr Prandtl number= v/a 1 a constant= (Pr > H)

: . . I, aconstant .............. ... MY
Qo dimensionless heat generation or . ) ;

. 31 o dimensionless fluid temperature
absorption ..................... WK .
N entropy generation rate Av3KT @ viscous work (see qu' (21)) >
o 14 roup parametet (UsuTo)/(AT<k

A\ characteristic entropy transfer rate -/ 3.K —1 _ groupp _ i (UonTo)/( )
T temperature . ..........ooeeeeneennnn... °C Subscript and superscript
u fluid velocity in x direction............ ns 1 0 reference value
U dimensionless axial velocity L value at left wall
v fluid velocity iny direction............ ns ! R value at right wall
w channelwidth............................ m av average value
X axialdistance ............. ... ...l m oo ambient condition

and Nayfeh [16] and Chamkha [17] reported hydromagnetic ber, irreversibility distribution ratio and presented the spatial
free convection for cone and wedge without/with porous distribution of irreversibility, entropy generation profiles or
medium. maps for the example problems. Since then, numerous in-
The above mentioned references that deal with free, vestigations have been performed to determine the entropy
forced, and mixed convection problems of different geome- generation and irreversibility profiles for different geometric
tries in the presence and absence of magnetic field are veryconfigurations, flow situations and thermal boundary condi-
much restricted to first law (of thermodynamics) analysis in tions. Most of them are numerical calculations due to non-
thermodynamic point of view. The contemporary trend in the linear nature of flow governing equations. Very few of them
field of heat transfer and thermal design is the second-law @€ done considering analytical approach of solution. For a
(of thermodynamics) analysis and its design-related conceptd00d review, the second law analysis as well as entropy gen-

of * Entropy Generation Minimization’ (see Bejan [18,19]). eration profiles are available in the references by Bejan [19,

This new trend is important and, at the same time, necessary20] and Drostand Zaworski [21]. ,
The purpose of this article is to analyze the first and sec-

if the heat transfer community is to contribute to a viable en- dql t th d ) h torist ¢ fully d
gering sluion o e energy prolems.Envopy genera- S 5% (0 oSy aricn) Tanecrsies o e
tion is associated with thermodynamic irreversibility, which P : . P i
. : . of heat generation/absorption and transverse hydromagnetic
is common in all types of heat transfer processes. Different S " :

effect with isothermal boundary condition. Expressions for

sources are responsible for ge_nerat|on of enjtro.py like heatdimensionless velocity and temperature, entropy generation
transfer down temperature gradient, characteristic of convec- |\ ber derived

tive heat transfer, viscous effect etc. Bejan [19] focused on
the different reasons behind entropy generation in applied
thermal engineering. Generation of entropy destroys avail- 5 proplem formulation
able work of a system. Therefore, it makes good engineer-

ing sense to focus on irreversibility (see Bejan [18,19]) of  Consider fully developed, laminar, steady mixed convec-
heat transfer and fluid flow processes and try to understandtion flow of an electrically conducting and heat-generating/
the function of entropy generation mechanism. Bejan [20] absorbing fluid in a vertical channel in the presence of a
first presented the second-law aspect of heat transfer usingransverse magnetic field applied normal to the flow direc-
different examples of fundamental forced convection prob- tion as shown in Fig. 1. The fluid is assumed to be incom-
lems. He introduced the concept of entropy generation num- pressible with constant properties except the density in the
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Y
_|‘—’|_ into their dimensionless forms using appropriate scaling pa-
A rameters. Axial and transverse distanoearfdy) are scaled
with channel widthw. Velocity u andv are scaled with the
By By inlet velocityuo. Dimensionless temperatugeis defined as
. g — > (T — Tm)/(Tr — Tm) WhereTy, is the mean temperature and
: : ill be defined later. Other di ionl t d
will be defined later. er dimensionless parameters are de-
- > - > fined in nomenclature. The dimensionless forms of Egs. (1)—
L (4) become
T, Ty au v _ )
X dY
AX v Y
X aY
»Y _ P G 1[0%U  9°U] M? )
39X Reé Re[0X2  9Y2] Re
oV . oV _ op 1 azv+azv @)
2 oX "9y oY ' RelaxZ ' ar2
e 16
U—+V—
i o ) i X aY
Fig. 1. Schematic diagram of the problem under consideration. 2 2 2
1 [9%0 9207, H EcM? ,
~ RePr| ax2 * Y2 iﬁe@_'_ Re v ®
buoyancy term in the-momentum equation. The magnetic _ ) N
Reynolds number is assumed to be small, so that the inducecbubjected to the following boundary conditions
magnetic field is neglected and the Hall effect of magne- 0< X <A and Y=0: U=V =0 and ® =©O_
_tohydrody_namlcs is _as_sume_d to_ be negligible. The govern-O< X<i and Y=1: U=V =0 and © = 6&r
ing equations for this investigation are based on the usual
balance laws of mass, momentum, and energy modified to0<Y <1 and X=0: U=Uo (9)

account for buoyancy effects, and hydromagnetic and heaty =0,
generation/ absorption effects. The governing equations are

as follows:
Continuity:

0 0

du v _
ax  dy
x-momentum:
ou u

Ma—i-l}@

)

2
chO

u(2)
0

2

|:8u

92u
ax2 ' 92

8y2

10
2P eB(T =T +v

p ox
+v[

y-momentum:

Jav n av
U— +v— =
ax dy

Energy:
JE— + JE—

= +
“[axz ayz}

In Egs. (1)—(4)p, p, a, o, Qop, and Bg stand for kine-
matic viscosity, fluid density, thermal diffusivity, electrical
conductivity of the fluid, heat generation/absorption parame-
ter, and magnetic induction respectively. Egs. (1)—(4) are put

82v

)

9y2

RED)
dx2

1lap

3
P 3)

chz
(T — Trm) + —2u?
PCp

92T 0o

PCp

(4)

and ©® =g
oU 93V 06
= = =0

0<Y<1 and X=A: = =— =
X 09X 94X

3. Analytical solution

To get the expressions for velocity and temperature
in dimensionless forms, Eqgs. (5)—(8) should be solved.
However, Egs. (5)—(8) are nonlinear in nature and coupled
by the temperature. It is difficult to get an analytical
solution unless they are simplified to linear forms. Assuming
a hydrodynamically and thermally fully developed flow
and neglecting the transverse velocityV « U), Eq. (5)
givesdU /9 X = 0. Based on these assumptions, Eq. (6) is
simplified to the following form
32U 5, OP* Gr
— - = - —0
Y2 X Re
where modified pressure* is the product ofP and Re.

If the fluid temperature gradient along the axial distaice

is neglected, that is, the fluid temperature is uniform along
the X direction, as is the case for the isothermal boundary
condition, and if the magnetic dissipation effect is neglected,
analytical solutions to the governing equations are possible.
SettingEc=0andda® /90X =0 in Eq. (8), we get
32

— PrH® =0

QY2

(10)

(11)
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It should be mentioned that the form of the analytical
solution for ® is different for a heat-generating fluid
(positive sign in Eq. (11)) than for a heat-absorbing fluid
(negative sign in Eq. (11)).

4. Heat-generating fluid

For this type of fluid the energy equation (Eqg. (11)) with
the positive sign in the second term is a linear differential
equation. Introducing two constant parametéfs= (Pr x
H)%5 and [T, = M, the following equations is the closed-
form solution of Eq. (11) fo®:

® = C1co9I11Y) + Cosin(I11Y) (12)

whereC; andC> are two arbitrary constants determined by
the thermal boundary conditions given in Eq. (9). Using the
boundary conditions;1 andC, becomes

C1=06L
Or — O coq111)
Co= -
sin(I11)
With the solution for® already determined, Eq. (10) can
be solved for velocityy subjected to the no-slip boundary
conditions given in Eq. (9). Avoiding detail arithmetic

operations, the expression for dimensionless velo€ity
becomes

(13)

U = C3+ Caco911Y) + Cssin(I11Y)
+ Cgcosh(IT2Y) + C7sinh(I12Y) (14)

In the above equation, the constagts C4, Cs, Cg, and
C7 can be defined as

Cyo _2PIOX ,_Gr_ G
mz ’ Re 12 + 112
5= C2 Co=—C3—Cy4 (15)
Re 112 + 112’
Crm Cgcosh(IT) + C3 + CacoqI11) + Cssin(I1y)
—sinh(I1»)

Dimensionless form of average velocit¥ay) through the
channelis
Casin(ITy) — Cs[coqITy) — 1]
I
CesSinh(IT») + C7[cosHITo) — 1]
+ A

Uy = C3+

(16)

5. Heat-absorbing fluid

For this type of fluid, the energy equation (Eq. (11)) with
the negative sign in the second term is a linear differential
equation that has the following closed-form solution &r

® = Dy cosRIT1Y) 4+ Dasinh(I11Y) a7
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where D1 and D, are arbitrary constants determined by
the thermal boundary conditions. Using the boundary con-
ditions, D1 and D2 becomes

D1=6L

®Or — O cosh(IT1)
Dz = :

sinh(I11)

With the solution for®@ already determined Eq. (10) can
be solved for velocityy subjected to the no-slip boundary
conditions given in Eq. (9). Avoiding detail arithmetic
operations, the expression for dimensionless velo€ity
becomes:

(18)

U = D3+ D4cosi(I11Y) + DssinNI11Y)
+ Dgcosi(I12Y) + D7sinhI12Y) (29)

In the above equation, the constafts, D4, Ds, Dg, and
D7 can be defined as:

IP/3X Gr Dy
Dy=-——p— Da=—pr5 5
I3 Re I1f — 115
Gr Do
Ds=———"2 _  Dg=—D3s—D 20
5 Re 17— 172 6 3— Dy (20)
Dy — Dg coshI12) + D3 + D4 coshIT1) + Dssinh(IT1)
= —sinh(ITp)

Dimensionless form of average velocity4,) through the
channelis
Dy sinh(IT1) — Ds[cosh(ITy) — 1]
In
Dg sinh(I12) + D7[cosi(IT2) — 1]
+ o

Uav = D3+

(21)

6. Second law analysis

The foundation of knowledge of entropy production goes
back to Clausius and Kelvin’s studies on the irreversible as-
pects of the Second Law of Thermodynamics. Since then the
theories based on these foundations have rapidly developed.
However, the entropy production resulting from temperature
differences has remained untreated by classical thermody-
namic, which motivates many researchers to conduct analy-
ses of fundamental and applied engineering problems based
on Second law analysis. Review of such analyses is beyond
the scope of this paper. For a comprehensive reference, see
Bejan [19].

Convection process in a channelis inherently irreversible.
The non-equilibrium conditions due to the exchange of
energy and momentum, within the fluid and at the solid
boundaries, cause a continuous entropy generation. One part
of this entropy production is due to the transfer of heat in the
direction of finite temperature gradients, which is common
almost in all types thermal engineering applications (see
Bejan [19] and Bejan et al. [22]). This temperature entropy
production rate can be evaluated from the first term at the
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right-hand side of Eq. (22). Another part of the entropy
production arises due to the fluid friction and in general
termed as the fluid friction irreversibility, which is calculated
using the second term at the right-hand side of Eq. (22).
The magnetic effect introduces an additional work due to
the magnetic field and magnetization. Irreversibility due to
magnetic effect can be calculated from the third term. The
general equation for entropy generation (Woods [23])

: k

"
57 =72l
0

Lij—ov) (E+VxB)
+ [ =) (E+V x B)]

VTR + %q)
0
(22)

whereJ, O,V, E, V, B,andTy are electric current, elec-
tric charge density, velocity vector, electric field, magnetic

735

+ IT{Ce SINNIT2Y) + C7cOSRITY) |
+wM3U? (27)

Using Eqgs. (17), (19), and (26), the expression for entropy
generation number for heat-absorbing fluid becomes

Ns = ITZ[D1sinh(IT1Y) + Dy coshTy¥)]?
+ W [M1{D4sin(IT1Y) + DscosIT1Y)}
+ MMa{ DeSINN(IT2Y ) + D7 coshIT2Y) 1]
+ ¥ M2U? (28)

7. Resultsand discussions

It is difficult to study the influence of all parameters

induction and reference temperature and for present pI’Oblernnvolved in the present problem on the flow and thermal field

To = Tm. In Eq. (22), the term@ and J at the right-hand

)

ou av ow

ax @ 3z

2. o [(du  dw\% [ov dw\?
— Z[div(v — 4 — — 4 —

3[ ( )] +(8y +3x> +<3Z 8y>

n Jw Ju
0x 9z

J=0(E+V xB)

(23)

>2
For present problem, Eq. (22) can be simplified into the
following form
2
]

5]

Entropy generation rate is positive and finite as long as tem-
perature and velocity gradients are present in the medium.
The dimensionless form of entropy generation rate is the en-
tropy generation numbeiNg) and is equal to the ratio of
actual entropy generation rate to the characteristic entropy
transfer rate [20]. The characteristic entropy transfer rate for
the channel with isothermal boundary condition is

2
S'é” _ [k(AT) :|

2
w?Tg

When non-dimensionlized using the same parameters al-

ready used for scaling purpose, Eq. (22) becomes

2
Ng = w
§ [ay} + [ay

In the above equation, the group parametferis equal

to (U3uTo)/(AT?%k). Using Egs. (12), (14), and (26),
the expression for entropy generation number for heat-
generating fluid becomes

k

2
TO

aT
dy

du
dy

u

To

2
oB
0,2
To

/N

(24)

(25)

00 aUu

2
} +wM?U? (26)

Ns = MZ[C1sin(TyY) — C2co8M1Y)]°
+ l1’[17;|_{—C4Sil’](17;|_Y) + C5COSH1Y)}

along with entropy generation characteristics. Therefore, a
selected set of graphical results is presented in Figs. 2—
12 that will give a good understanding of the influence
of different parameters on the velocity, temperature, and
entropy generation profiles. Both symmetric&@ (= 1,
®r = 1) and asymmetrical temperatur®( = 0, Or = 1)
at the walls are considered for the heat generating fluid.
Modified dimensionless velocityU*) is calculated by
dividing the velocityU by the average velocit¥/,,. Fig. 2
shows the variation ot/* as a function ofY at different
Hartmann numbergM), ranging 0-30, associated with
the case of constant and symmetrical wall temperatures.
Velocity profiles are symmetrical about the centerliire=
0.5) of the channel for each value @f. Increase in the
values of M have a tendency to slow down the movement
of the fluid in the channel. This is because the application
of magnetic field creates a resistive force similar to the
drag force that acts in the opposite direction of the fluid

1.5

—————

1.25F y - ————
1E
0.75 R
0.5 ________: M=20
0.25 H o0P/0X=0.1, H=1, Pr=0.7

Gr/Re=1, ©,=1, © =1

N T T N T T T T T A

0.25 0.5 0.75
Y

Fig. 2. Velocity U* as a function ofY at different M for symmetric
temperature at the boundary.

0 1
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1.8
1.5
1.2
"50.9
Gl
0.6,
0.3
W 3% o1 L 3T HE90,
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
Y Y
Fig. 3. Velocity U* as a function ofY at different M for asymmetric Fig. 5. VelocityU* as a function ot at different negatived for symmetric
temperature at the boundary. temperature at the boundary.
3.5¢ 1.15
E OP/0X=0.1 / - 0P/0X=0.1, M=1, Pr=0.7
3 3 1}\)/[:(1) , ij \ » B 0,=1, O,=1
2.5F I i y A H=1
> - Gr/Re=1 jl PN B
2 051 iy N\ -
— — 1/ =~ \
LsE 0= i70 == SN 1.05—
= 1
0.5F /7 n
0.~/ “IIIT . o
é_" . /:/ _____ H-50 \..\-‘ 7 0.95 :
-0.5 S ———— - H=100 N4 B He1
_1:|||||||||I||||I|||| 09_||1|I||||||||||||||
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
Y Y
Fig. 4. VelocityU* as a function ot at different positiveH for symmetric Fig. 6. Temperature® as a function ofY at different H for symmetric
temperature at the boundary. temperature at the boundary.

motion, thus causing the velocity of the fluid to decrease. velocity profiles is shown in Fig. 4 for the heat generation
This is depicted in the decreases of tieasM increases in case (positiveH) and in Fig. 5 for the heat absorption
Fig. 2. Velocity becomes maximum at the centerline of the case (negativé/). Velocity profiles are symmetrical about
channel resulting zero velocity gradie(t /0Y) for each the centerline(Y = 0.5) of the channel. Increase in the
velocity profile. Fig. 3 shows the influence of asymmetric values of H causes warming the fluid in the channel,
temperature at the walls on the velocity profiles keeping which increases the buoyancy effect. Two distinct zones
all other variables same as in Fig. 2. In this case, velocity are observed in Fig. 4. For.®< Y < 0.7, increasing
profiles are not symmetric about the centerline of the tendency of the fluid velocity is observed with increashig
channel. Asymmetricity increases more soMisncreases. For Y < 0.3 andY > 0.7, the fluid motion is retarded
Maximum velocity (as well as zero velocity gradient) moves with increasingH. Flow reversal is observed at high
towards the hot wall (in this case right wall) &6 increases. near the walls. Magnitude of reverse velocity is small at
For constant and symmetric wall temperatures, the effect H = 80, which is high in magnitude af = 100. For the
of the heat-generation or absorption coefficigit) on heat absorption case (negatik®, the fluid motion shows
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2.5 1.6
0P/6X=0.1, M=1, Pr=0.7 -
0,=0, ©,=1

l.4=

- 12F
1.5 -
® [ z 1F
2 5
N 0.8
0.5:— 0.6:—
0 o T T T Y A 04:||||I||||I||||I||||
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
Y Y

Fig. 7. Temperature as a function ofY at different H for asymmetric
temperature at the boundary.

Fig. 9. Entropy generation numbafg as a function ot at differenty for
asymmetric temperature at the boundary.

2 1 ——
C OP'/0X=0.1, M=1, Pr=0.7, Gr/Re=1 - O0P'/6X=0.1, M=1, Pr=0.7, Gr/Re=1
H=1, © =1, 0 =1 N ¥=1,0,=1, 0,1
s L ) R |
1.6F
1.2F
z F .
0.8 10
A\ 8
SANARNY ¢
04R N}
- 0
O_ ﬁ}»\_r_:_—‘__ 0 L1
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
Y Y

Fig. 8. Entropy generation numbafs as a function ot at different¥ for
symmetric temperature at the boundary.

Fig. 10. Entropy generation numbafs as a function oft” at different H
for symmetric temperature at the boundary.

retardation (see Fig. 5) around the channel centerlirge<0 condition, temperature profiles are symmetrical about the
Y < 0.7) for increasing|H|. For Y < 0.3 andY > 0.7, centerline of the channel (see Fig. 6). Temperature is min-
magnitude of the velocity is higher for highig |. imum at the centerline of the channel féf < 0, while
Figs. 6 and 7 show the influence of the heat-generationtemperature is maximum fa > 0. As expected, increas-
or absorption parameté#/) on fluid temperature profiles ing H causes the fluid to become warmer and therefore
for the cases of symmetric and asymmetric temperatures atincrease its temperature. Because of non-symmetric ther-
the walls respectively keeping other parameters constant agnal boundary condition, temperature profiles are asymmet-
shown in figures. The positive value &f corresponds heat-  ric (see Fig. 7).
ing, while the negative value corresponds cooling of the  For constant and symmetrical wall temperatures, entropy
fluid. For H = 0, no heat generates and the correspond- generation numbe(Ns) is plotted as a function ofY
ing temperature profile becomes straight line (for symmet- in Fig. 8 at different group parameterg’). The group
rical case) and linear (for asymmetrical case) as shown in parameter determines the relative importance of viscous
Figs. 6 and 7. For the symmetry of the thermal boundary effect (see Bejan [19]). For alll, entropy generation
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3.5 - 2
- 0P /0X=0.1, M=1, Pr=0.7, Gr/Re=1 OP"/6X=0. 1, M=1
3 ¥=1, 0,0, 671 175 H=1, 0,=1, © =1
- 1.5F
2.5 = H= -
= -4 H 1.25F
2E 33 - Gr/R
Z T2 z £ 10
ol g 1
0.75 5\ g
1 - 1
0.5F 0.1
0.5 ‘
0 TR N N R 0
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
Y Y

Fig. 11. Entropy generation numbafs as a function oft at different H
for asymmetric temperature at the boundary.

0.25

OP'/6X=0.1, Pr=0.7, Gr/Re=1
¥=1, H=1, ©,=1, =1
0.2

0.15

0.1

0.05

| ]
0 0.25 0.5 0.75 1
Y

Fig. 12. Entropy generation numbafg as a function ofY at differentM
for symmetric temperature at the boundary.

Fig. 13. Entropy generation numb@fs as a function ofY at different
Gr/Re for symmetric temperature at the boundary.

difference between two consecutiwg profiles decreases
alongY. Ny profiles merge with each other it= 0.6. After
this point(Y = 0.6), N profiles show different characteris-
tics depending on the value gf. For ¥ = 0, fluid friction
irreversibility becomes zero and entropy generation num-
ber falls linearly towards the hot wall. For higher (e.g.,
¥ = 8), fluid friction irreversibility dominates and entropy
generation number rapidly increases with

The influence of heat-generation or absorption parameter
(H) on entropy generation number is presented in Fig. 10
for the symmetric, and in Fig. 11 for the asymmetric thermal
boundary conditions. For the symmetric case (see Fig. 10),
entropy generation distribution is still characterized by nice
concave shaped profile. Heat transfer has no contribution to
entropy generation af =0 (a7 /3Y = 0 everywhere, see
Fig. 6), showing minimum entropy generation rate (com-
pared to the profiles of othgd). Heating of the fluid (pos-
itve H) shows higher entropy generation rate than the
cooling of the fluid (negativeH). At a particularY, en-
tropy generation rate is higher for higher value f(ab-

rate is minimum at the centerline of the channel. Both Solute value). This scenario becomes complicated for asym-

velocity and temperature are maximum (or minimum) at the metric thermal boundary condition (see Fig. 11) due to
centerline (see Figs. 2 and 6), which cause zero velocity the complex nature of velocity and temperature distribu-
and temperature gradieni®U/dY anddT/dY) leaving no tion patterns. For allH, profiles intersect approximately
contribution to the entropy generation from the gradient atY =~ 0.6. ForY < 0.6, entropy generation rate is higher
terms of entropy generation equation (first and second termsfor lower value of H and opposite scenario is observed
of Eq. (24).Ny profiles are symmetrical about the centerline forY > 0.425.
of the channel. For a particulaf, Ny increases with the Influence of Hartmann numbe¢M) on the entropy
increase ofy. Both walls act as a strong concentrator of generation profile is shown in Fig. 12. The parameter
irreversibility whereNg is maximum. is not too much dominating on entropy generation. A large
Fig. 9 shows the entropy generation profiles for asym- variation ofM causes a small variation in the rate of entropy
metric thermal boundary condition. For &, left wall acts generation. Fig. 13 shows the influenc&nf Re on the local
as a strong concentrator of irreversibility. Magnitude of the entropy generation rate.
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8. Numerical calculation

generation numbergVs) are calculated and then integrated
over the volume of the channdgl) to get the volume

To conduct a numerical analysis we used the techniqueaveraged entropy generation numb¥ga,) as follows:

similar as Hortmann et al. [24] based on the Finite-volume
method as described in Ferziger and Peric [25]. The solution
domain is first subdivided into finite number of control vol-
umes (CV). Body fitted, non-orthogonal grids are oriented in
such a way that the number of CV is higher near the walls.

NsdX dy dz (29)

P \”7
P \»T

X=1
NSav—/NSdV= /

All variables are calculated at the center of each CV (non- For a range of aspect ratia) of the channel, there exists
staggered scheme). SIMPLE algorithm is used. Stone’s SIPa partmglgr value otx (= o) where entropy generation
solver [25] is used to solve the system of discretized equa- (irreversibility) become minimum. The corresponding value

tions. Details about numerical calculation are avoided.
For a particulaGr /Re and M, field values ofu-velocity,

of minimum entropy generation is symbolically expressed as
Nsaymin, Which is a function oGr /ReandM . For numerical

v-velocity, and temperature are calculated numerically using calculation, internal heat generation and/or absorption is
Egs. (5)—(8). Then using Eq. (22), local values of entropy assumed to be negligible.
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Fig. 14. Average entropy generation number at diffe@ntRe.
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Fig. 15. Distribution ofxg as a function ofcr /Re at differentM .

Fig. 14 shows the distribution oNsay/Nsaymin as a
function of « at differentGr/Re for a particular value of
Hartmann numbexM). For a particularGr/Re, average
entropy generation decreases with an increagirghows its
minimum at particular value af (= «g), then increases with
further increase af. The geometric parametes, is plotted
in Fig. 15 as a function of5r/Re at different Hartmann
number. The linear nature of they — Gr/Re profiles in
logarithmic plot enable us to construct a correlation in the
following form:

—0.11779
o = 6.32581x (M)0-223384 <9>

Re
(0.1< M < 10 and 01 < Gr/Re < 10) (30)

The above correlation shows good agreement with the
numerical calculations withie-5% accuracy.

9. Conclusion

Analytical expressions have been developed for velocity,
temperature, and entropy generation number for mixed con-
vection flow in a vertical channel under the action of trans-
verse magnetic field. Only isothermal boundary condition is
considered with symmetric and asymmetric temperatures at
the walls. With symmetrical temperature at the walls, pro-
files for velocity, temperature and entropy generation num-
ber show symmetrical nature. Symmetricity of these profiles
is distorted for asymmetrical thermal boundary condition.
Both walls act as strong concentrator of irreversibility due to
high velocity and temperature gradients. Group parameters
have significant effect on entropy generation rate. Higher
value of group parameter causes higher entropy generation.
For positive value of heat generation/absorption parameter,
entropy generation rate is higher than the negative value of
same magnitude. Based on the numerical calculation, a cor-
relation is proposed which can calculate a geometric para-
meter(ag) at which value irreversibility is minimum.
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