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Abstract

An analysis has been performed to study the First and Second laws (of thermodynamics) characteristics of flow and heat trans
vertical channel made of two parallel plates under the action of transverse magnetic field. Combined free and forced convection
channel is considered. Flow is assumed to be steady, laminar, fully developed of electrically conducting, and heat-generating
fluid. Both vertical walls are kept isothermal at the same or different temperatures. Governing equations in Cartesian coord
first simplified and solved analytically to develop the expressions for velocity and temperature, entropy generation number(NS), and
irreversibility distribution ratio. Velocity, temperature, and entropy generation profiles are presented graphically. Full form of the go
equations are solved numerically using control-volume based finite volume method. Based on the numerical calculations, avera
generation numbers are calculated for channels with different aspect ratios. Finally, a correlation is proposed which essentially e
calculating a geometric parameter(α0) that will be characterized by minimum irreversibility at a particular value ofGr/Re (ratio of Grashof
number and Reynolds number) andM (Hartmann number).
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

A combined free and forced convection flow of
electrically conducting and heat-generating/absorbing fl
in a channel in the presence of a transverse magn
field is of special technical significance because of
frequent occurrence in many industrial applications suc
geothermal reservoirs, cooling of nuclear reactors, ther
insulation, and petroleum reservoirs. This type of prob
also arises in electronic packages, micro electronic dev
during their operations.

In the absence of magnetic field, references [1–3]
give some ideas about fluid flow and thermal characteris
inside a vertical channel with symmetrical or asymmetr
thermal boundary condition. Sparrow and Cess [4]
Riley [5] studied buoyancy induced flow and transport in
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presence of magnetic field. Oreper and Szekely [6] analy
the buoyancy driven flow in a rectangular cavity under
action of externally imposed magnetic field. Alboussi
et al. [7] did an asymptotic analysis to study the buoya
driven convection in a uniform magnetic field. For clos
geometry, Garandet et al. [8] studied the problem of f
convective flow in a rectangular enclosure in the prese
of transverse magnetic field. For rectangular vertical d
Hunt [9] and Buhler [10] analyzed the fluid flow proble
in magnetic field with or without buoyancy effect. F
conducting fluid, Shercliff [11] analyzed the fluid flo
characteristics in a pipe under transverse magnetic field
an infinite vertical plate, Raptis and Kafoussias [12] stud
the flow and heat transfer characteristics in the prese
of porous medium and magnetic field. Later Raptis [
extended the vertical plate problem to a vertical chan
problem in the presence of magnetic field. For unste
flow, Pan and Li [14] studied magnetohydrodynamic mix
convection in a vertical channel and Chamkha [15] repo
the unsteady natural convection in a porous channel in
presence of magnetic field. For other geometry, Vajrav
Elsevier SAS. All rights reserved.
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Nomenclature

B0 magnetic induction . . . . . . . . . . . . . . . . . Wb·m−2

CP specific heat . . . . . . . . . . . . . . . . . . . kJ·kg−1·K−1

Ec Eckert number,= ν2 · Gr2 ·w−2 ·C−1
P ·�T −1

g gravitational acceleration . . . . . . . . . . . . . . m·s−2

Gr grashof number,= g·β·�T ·w3/ν2

k thermal conductivity . . . . . . . . . . . . W·m−1·K−1

M Hartmann number,= B0w
√
σ/(ρν)

NS entropy generation number,= Ṡ′′′/S′′′
c

NSav average entropy generation number
p pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
P dimensionless pressure
Pr Prandtl number,= ν/α
Q0 dimensionless heat generation or

absorption . . . . . . . . . . . . . . . . . . . . . W·m−3·K−1

Ṡ′′′ entropy generation rate . . . . . . . . . . W·m−3·K−1

S′′′
c characteristic entropy transfer rate W·m−3·K−1

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .◦C
u fluid velocity inx direction . . . . . . . . . . . . m·s−1

U dimensionless axial velocity
v fluid velocity iny direction . . . . . . . . . . . . m·s−1

w channel width . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
x axial distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

X dimensionless axial distance
y transverse distance . . . . . . . . . . . . . . . . . . . . . . . m
Y dimensionless transverse distance

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . m2·s−1

α aspect ratio,= L/w
β thermal expansion coefficient . . . . . . . . . . . . K−1

ν kinematic viscosity . . . . . . . . . . . . . . . . . . m2·s−1

ρ fluid density . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

σ fluid electrical conductivity . . . . . . . . . −1·m−1

Π1 a constant,= (Pr ×H)0.5
Π2 a constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (M)
Θ dimensionless fluid temperature
Φ viscous work (see Eq. (21))
Ψ group parameter,= (U2

0µT0)/(�T
2k)

Subscript and superscript

0 reference value
L value at left wall
R value at right wall
av average value
∞ ambient condition
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and Nayfeh [16] and Chamkha [17] reported hydromagn
free convection for cone and wedge without/with poro
medium.

The above mentioned references that deal with f
forced, and mixed convection problems of different geom
tries in the presence and absence of magnetic field are
much restricted to first law (of thermodynamics) analysis
thermodynamic point of view. The contemporary trend in
field of heat transfer and thermal design is the second
(of thermodynamics) analysis and its design-related con
of ‘Entropy Generation Minimization’ (see Bejan [18,19])
This new trend is important and, at the same time, neces
if the heat transfer community is to contribute to a viable
gineering solution to the energy problems. Entropy gen
tion is associated with thermodynamic irreversibility, whi
is common in all types of heat transfer processes. Diffe
sources are responsible for generation of entropy like
transfer down temperature gradient, characteristic of con
tive heat transfer, viscous effect etc. Bejan [19] focused
the different reasons behind entropy generation in app
thermal engineering. Generation of entropy destroys a
able work of a system. Therefore, it makes good engin
ing sense to focus on irreversibility (see Bejan [18,19])
heat transfer and fluid flow processes and try to unders
the function of entropy generation mechanism. Bejan [
first presented the second-law aspect of heat transfer u
different examples of fundamental forced convection pr
lems. He introduced the concept of entropy generation n
t

,

ber, irreversibility distribution ratio and presented the spa
distribution of irreversibility, entropy generation profiles
maps for the example problems. Since then, numerou
vestigations have been performed to determine the ent
generation and irreversibility profiles for different geomet
configurations, flow situations and thermal boundary con
tions. Most of them are numerical calculations due to n
linear nature of flow governing equations. Very few of the
are done considering analytical approach of solution. F
good review, the second law analysis as well as entropy
eration profiles are available in the references by Bejan
20] and Drost and Zaworski [21].

The purpose of this article is to analyze the first and s
ond laws (of thermodynamics) characteristics of fully d
veloped mixed convection flow in a channel in the prese
of heat generation/absorption and transverse hydromag
effect with isothermal boundary condition. Expressions
dimensionless velocity and temperature, entropy genera
number derived.

2. Problem formulation

Consider fully developed, laminar, steady mixed conv
tion flow of an electrically conducting and heat-generati
absorbing fluid in a vertical channel in the presence o
transverse magnetic field applied normal to the flow dir
tion as shown in Fig. 1. The fluid is assumed to be inco
pressible with constant properties except the density in
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Fig. 1. Schematic diagram of the problem under consideration.

buoyancy term in thex-momentum equation. The magne
Reynolds number is assumed to be small, so that the ind
magnetic field is neglected and the Hall effect of mag
tohydrodynamics is assumed to be negligible. The gov
ing equations for this investigation are based on the u
balance laws of mass, momentum, and energy modifie
account for buoyancy effects, and hydromagnetic and
generation/ absorption effects. The governing equations
as follows:
Continuity:

∂u

∂x
+ ∂v

∂y
= 0 (1)

x-momentum:

u
∂u

∂x
+ v ∂u

∂y

= − 1

ρ

∂p

∂x
+ gβ(T − Tm)+ ν

[
∂2u

∂x2 + ∂2u

∂y2

]
− σB2

0

ρ
u (2)

y-momentum:

u
∂v

∂x
+ v ∂v

∂y
= − 1

ρ

∂p

∂y
+ ν

[
∂2v

∂x2
+ ∂2v

∂y2

]
(3)

Energy:

u
∂T

∂x
+ v ∂T

∂y

= α
[
∂2T

∂x2
+ ∂2T

∂y2

]
± Q0

ρcp
(T − Tm)+ σB2

0

ρcp
u2 (4)

In Eqs. (1)–(4),ν, ρ, α, σ, Q0, andB0 stand for kine-
matic viscosity, fluid density, thermal diffusivity, electric
conductivity of the fluid, heat generation/absorption para
ter, and magnetic induction respectively. Eqs. (1)–(4) are
into their dimensionless forms using appropriate scaling
rameters. Axial and transverse distances (x andy) are scaled
with channel widthw. Velocity u andv are scaled with the
inlet velocityu0. Dimensionless temperatureΘ is defined as
(T − Tm)/(TR − Tm) whereTm is the mean temperature an
will be defined later. Other dimensionless parameters are
fined in nomenclature. The dimensionless forms of Eqs.
(4) become

∂U

∂X
+ ∂U

∂Y
= 0 (5)

U
∂U

∂X
+ V ∂U

∂Y

= −∂P
∂X

+ Gr

Re2Θ + 1

Re

[
∂2U

∂X2 + ∂2U

∂Y 2

]
− M2

Re
U (6)

U
∂V

∂X
+ V ∂V

∂Y
= −∂P

∂Y
+ 1

Re

[
∂2V

∂X2 + ∂2V

∂Y 2

]
(7)

U
∂Θ

∂X
+ V ∂Θ

∂Y

= 1

Re Pr

[
∂2Θ

∂X2
+ ∂2Θ

∂Y 2

]
± H

Re
Θ + EcM2

Re
U2 (8)

subjected to the following boundary conditions

0 �X � λ and Y = 0: U = V = 0 and Θ =ΘL

0 �X � λ and Y = 1: U = V = 0 and Θ =ΘR

0 � Y � 1 and X = 0: U =U0

V = 0, and Θ =Θ0

0 � Y � 1 and X = λ:
∂U

∂X
= ∂V

∂X
= ∂Θ

∂X
= 0

(9)

3. Analytical solution

To get the expressions for velocity and temperat
in dimensionless forms, Eqs. (5)–(8) should be solv
However, Eqs. (5)–(8) are nonlinear in nature and coup
by the temperatureΘ. It is difficult to get an analytica
solution unless they are simplified to linear forms. Assum
a hydrodynamically and thermally fully developed flo
and neglecting the transverse velocityV (V  U), Eq. (5)
gives∂U/∂X = 0. Based on these assumptions, Eq. (6
simplified to the following form

∂2U

∂Y 2
−M2U = ∂P ∗

∂X
− Gr

Re
Θ (10)

where modified pressureP ∗ is the product ofP and Re.
If the fluid temperature gradient along the axial distanceX

is neglected, that is, the fluid temperature is uniform al
theX direction, as is the case for the isothermal bound
condition, and if the magnetic dissipation effect is neglec
analytical solutions to the governing equations are poss
SettingEc = 0 and∂Θ/∂X = 0 in Eq. (8), we get

∂2Θ

2 ± Pr HΘ = 0 (11)

∂Y
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It should be mentioned that the form of the analyti
solution for Θ is different for a heat-generating flu
(positive sign in Eq. (11)) than for a heat-absorbing fl
(negative sign in Eq. (11)).

4. Heat-generating fluid

For this type of fluid the energy equation (Eq. (11)) w
the positive sign in the second term is a linear differen
equation. Introducing two constant parameters,Π1 = (Pr ×
H)0.5 andΠ2 =M, the following equations is the close
form solution of Eq. (11) forΘ:

Θ = C1 cos(Π1Y )+C2 sin(Π1Y) (12)

whereC1 andC2 are two arbitrary constants determined
the thermal boundary conditions given in Eq. (9). Using
boundary conditions,C1 andC2 becomes

C1 =ΘL

C2 = ΘR −ΘL cos(Π1)

sin(Π1)

(13)

With the solution forΘ already determined, Eq. (10) ca
be solved for velocityU subjected to the no-slip bounda
conditions given in Eq. (9). Avoiding detail arithmet
operations, the expression for dimensionless velocityU
becomes

U = C3 +C4 cos(Π1Y )+C5 sin(Π1Y )

+C6 cosh(Π2Y )+C7 sinh(Π2Y ) (14)

In the above equation, the constantsC3, C4, C5, C6, and
C7 can be defined as

C3 = −∂P/∂X
Π2

2

, C4 = Gr

Re

C1

Π2
1 +Π2

2

C5 = Gr

Re

C2

Π2
1 +Π2

2

, C6 = −C3 −C4

C7 = C6 cosh(Π2)+C3 +C4 cos(Π1)+C5 sin(Π1)

−sinh(Π2)

(15)

Dimensionless form of average velocity(Uav) through the
channel is

Uav = C3 + C4 sin(Π1)−C5[cos(Π1)− 1]
Π1

+ C6 sinh(Π2)+C7[cosh(Π2)− 1]
Π2

(16)

5. Heat-absorbing fluid

For this type of fluid, the energy equation (Eq. (11)) w
the negative sign in the second term is a linear differen
equation that has the following closed-form solution forΘ

Θ =D1 cosh(Π1Y )+D2 sinh(Π1Y ) (17)
whereD1 andD2 are arbitrary constants determined
the thermal boundary conditions. Using the boundary c
ditions,D1 andD2 becomes

D1 =ΘL

D2 = ΘR −ΘL cosh(Π1)

sinh(Π1)

(18)

With the solution forΘ already determined Eq. (10) ca
be solved for velocityU subjected to the no-slip bounda
conditions given in Eq. (9). Avoiding detail arithmet
operations, the expression for dimensionless velocityU
becomes:

U = D3 +D4 cosh(Π1Y )+D5 sinh(Π1Y)

+D6 cosh(Π2Y )+D7 sinh(Π2Y ) (19)

In the above equation, the constantsD3, D4, D5, D6, and
D7 can be defined as:

D3 = −∂P/∂X
Π2

2

, D4 = −Gr

Re

D1

Π2
1 −Π2

2

D5 = −Gr
Re

D2

Π2
1 −Π2

2

, D6 = −D3 −D4

D7 = D6 cosh(Π2)+D3 +D4 cosh(Π1)+D5 sinh(Π1)

−sinh(Π2)

(20)

Dimensionless form of average velocity (Uav) through the
channel is

Uav = D3 + D4 sinh(Π1)−D5[cosh(Π1)− 1]
Π1

+ D6 sinh(Π2)+D7[cosh(Π2)− 1]
Π2

(21)

6. Second law analysis

The foundation of knowledge of entropy production go
back to Clausius and Kelvin’s studies on the irreversible
pects of the Second Law of Thermodynamics. Since then
theories based on these foundations have rapidly develo
However, the entropy production resulting from tempera
differences has remained untreated by classical therm
namic, which motivates many researchers to conduct an
ses of fundamental and applied engineering problems b
on Second law analysis. Review of such analyses is be
the scope of this paper. For a comprehensive reference
Bejan [19].

Convection process in a channel is inherently irreversi
The non-equilibrium conditions due to the exchange
energy and momentum, within the fluid and at the so
boundaries, cause a continuous entropy generation. One
of this entropy production is due to the transfer of heat in
direction of finite temperature gradients, which is comm
almost in all types thermal engineering applications (
Bejan [19] and Bejan et al. [22]). This temperature entro
production rate can be evaluated from the first term at
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right-hand side of Eq. (22). Another part of the entro
production arises due to the fluid friction and in gene
termed as the fluid friction irreversibility, which is calculat
using the second term at the right-hand side of Eq. (
The magnetic effect introduces an additional work due
the magnetic field and magnetization. Irreversibility due
magnetic effect can be calculated from the third term. T
general equation for entropy generation (Woods [23])

Ṡ′′′ = k

T 2
0

[∇T ]2 + µ

T0
Φ

+ 1

T0

[
(J −QV ) · (E + V × B)

]
(22)

whereJ , Q,V , E, V , B , andT0 are electric current, elec
tric charge density, velocity vector, electric field, magne
induction and reference temperature and for present pro
T0 = Tm. In Eq. (22), the termsΦ andJ at the right-hand
side are

Φ = 2

[(
∂u

∂x

)2

+
(
∂v

∂y

)2

+
(
∂w

∂z

)2]

− 2

3

[
div(V )

]2 +
(
∂u

∂y
+ ∂v

∂x

)2

+
(
∂v

∂z
+ ∂w

∂y

)2

+
(
∂w

∂x
+ ∂u

∂z

)2

(23)

J = σ(E + V × B)

For present problem, Eq. (22) can be simplified into
following form

Ṡ′′′ = k

T 2
0

[
∂T

∂y

]2

+ µ

T0

[
∂u

∂y

]2

+ σB2
0

T0
u2 (24)

Entropy generation rate is positive and finite as long as t
perature and velocity gradients are present in the med
The dimensionless form of entropy generation rate is the
tropy generation number(NS) and is equal to the ratio o
actual entropy generation rate to the characteristic ent
transfer rate [20]. The characteristic entropy transfer rate
the channel with isothermal boundary condition is

Ṡ′′′
c =

[
k(�T )2

w2T 2
0

]
(25)

When non-dimensionlized using the same parameter
ready used for scaling purpose, Eq. (22) becomes

NS =
[
∂Θ

∂Y

]2

+Ψ
[
∂U

∂Y

]2

+ΨM2U2 (26)

In the above equation, the group parameterΨ is equal
to (U2

0µT0)/(�T
2k). Using Eqs. (12), (14), and (26

the expression for entropy generation number for h
generating fluid becomes

NS = Π2
1

[
C1 sin(Π1Y )−C2 cos(Π1Y )

]2

+Ψ [
Π1

{−C4 sin(Π1Y )+C5 cos(Π1Y )
}

+Π2
{
C6 sinh(Π2Y )+C7 cosh(Π2Y )

}]2

+ΨM2U2 (27)

Using Eqs. (17), (19), and (26), the expression for entr
generation number for heat-absorbing fluid becomes

NS = Π2
1

[
D1 sinh(Π1Y )+D2 cosh(Π1Y )

]2

+Ψ [
Π1

{
D4 sin(Π1Y )+D5 cos(Π1Y )

}
+Π2{D6 sinh(Π2Y )+D7 cosh(Π2Y )

}]2

+ΨM2U2 (28)

7. Results and discussions

It is difficult to study the influence of all paramete
involved in the present problem on the flow and thermal fi
along with entropy generation characteristics. Therefor
selected set of graphical results is presented in Figs
12 that will give a good understanding of the influen
of different parameters on the velocity, temperature,
entropy generation profiles. Both symmetrical (ΘL = 1,
ΘR = 1) and asymmetrical temperature (ΘL = 0, ΘR = 1)
at the walls are considered for the heat generating fluid.

Modified dimensionless velocity(U∗) is calculated by
dividing the velocityU by the average velocityUav. Fig. 2
shows the variation ofU∗ as a function ofY at different
Hartmann numbers(M), ranging 0–30, associated wi
the case of constant and symmetrical wall temperatu
Velocity profiles are symmetrical about the centerline(Y =
0.5) of the channel for each value ofM. Increase in the
values ofM have a tendency to slow down the movem
of the fluid in the channel. This is because the applica
of magnetic field creates a resistive force similar to
drag force that acts in the opposite direction of the fl

Fig. 2. Velocity U∗ as a function ofY at differentM for symmetric
temperature at the boundary.
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Fig. 3. Velocity U∗ as a function ofY at differentM for asymmetric
temperature at the boundary.

Fig. 4. VelocityU∗ as a function ofY at different positiveH for symmetric
temperature at the boundary.

motion, thus causing the velocity of the fluid to decrea
This is depicted in the decreases of theU∗ asM increases in
Fig. 2. Velocity becomes maximum at the centerline of
channel resulting zero velocity gradient(∂U/∂Y ) for each
velocity profile. Fig. 3 shows the influence of asymme
temperature at the walls on the velocity profiles keep
all other variables same as in Fig. 2. In this case, velo
profiles are not symmetric about the centerline of
channel. Asymmetricity increases more so asM increases
Maximum velocity (as well as zero velocity gradient) mov
towards the hot wall (in this case right wall) asM increases

For constant and symmetric wall temperatures, the e
of the heat-generation or absorption coefficient(H) on
Fig. 5. VelocityU∗ as a function ofY at different negativeH for symmetric
temperature at the boundary.

Fig. 6. TemperatureΘ as a function ofY at differentH for symmetric
temperature at the boundary.

velocity profiles is shown in Fig. 4 for the heat generat
case (positiveH ) and in Fig. 5 for the heat absorptio
case (negativeH ). Velocity profiles are symmetrical abo
the centerline(Y = 0.5) of the channel. Increase in th
values of H causes warming the fluid in the chann
which increases the buoyancy effect. Two distinct zo
are observed in Fig. 4. For 0.3 � Y � 0.7, increasing
tendency of the fluid velocity is observed with increasingH .
For Y < 0.3 and Y > 0.7, the fluid motion is retarde
with increasingH . Flow reversal is observed at highH
near the walls. Magnitude of reverse velocity is small
H = 80, which is high in magnitude atH = 100. For the
heat absorption case (negativeH ), the fluid motion shows
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Fig. 7. TemperatureΘ as a function ofY at differentH for asymmetric
temperature at the boundary.

Fig. 8. Entropy generation numberNS as a function ofY at differentΨ for
symmetric temperature at the boundary.

retardation (see Fig. 5) around the channel centerline (0.3�
Y � 0.7) for increasing|H |. For Y < 0.3 and Y > 0.7,
magnitude of the velocity is higher for higher|H |.

Figs. 6 and 7 show the influence of the heat-genera
or absorption parameter(H) on fluid temperature profile
for the cases of symmetric and asymmetric temperatur
the walls respectively keeping other parameters consta
shown in figures. The positive value ofH corresponds hea
ing, while the negative value corresponds cooling of
fluid. For H = 0, no heat generates and the correspo
ing temperature profile becomes straight line (for symm
rical case) and linear (for asymmetrical case) as show
Figs. 6 and 7. For the symmetry of the thermal bound
t
s

Fig. 9. Entropy generation numberNS as a function ofY at differentΨ for
asymmetric temperature at the boundary.

Fig. 10. Entropy generation numberNS as a function ofY at differentH
for symmetric temperature at the boundary.

condition, temperature profiles are symmetrical about
centerline of the channel (see Fig. 6). Temperature is m
imum at the centerline of the channel forH < 0, while
temperature is maximum forH > 0. As expected, increas
ing H causes the fluid to become warmer and there
increase its temperature. Because of non-symmetric
mal boundary condition, temperature profiles are asymm
ric (see Fig. 7).

For constant and symmetrical wall temperatures, entr
generation number(NS) is plotted as a function ofY
in Fig. 8 at different group parameters (Ψ ). The group
parameter determines the relative importance of visc
effect (see Bejan [19]). For allΨ , entropy generation
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Fig. 11. Entropy generation numberNS as a function ofY at differentH
for asymmetric temperature at the boundary.

Fig. 12. Entropy generation numberNS as a function ofY at differentM
for symmetric temperature at the boundary.

rate is minimum at the centerline of the channel. B
velocity and temperature are maximum (or minimum) at
centerline (see Figs. 2 and 6), which cause zero velo
and temperature gradients(∂U/∂Y and∂T /∂Y ) leaving no
contribution to the entropy generation from the gradi
terms of entropy generation equation (first and second te
of Eq. (24).NS profiles are symmetrical about the centerl
of the channel. For a particularY, NS increases with the
increase ofΨ . Both walls act as a strong concentrator
irreversibility whereNS is maximum.

Fig. 9 shows the entropy generation profiles for asy
metric thermal boundary condition. For allΨ , left wall acts
as a strong concentrator of irreversibility. Magnitude of
Fig. 13. Entropy generation numberNS as a function ofY at different
Gr/Re for symmetric temperature at the boundary.

difference between two consecutiveNS profiles decrease
alongY .NS profiles merge with each other atY = 0.6. After
this point(Y = 0.6), NS profiles show different characteri
tics depending on the value ofΨ . ForΨ = 0, fluid friction
irreversibility becomes zero and entropy generation n
ber falls linearly towards the hot wall. For higherΨ (e.g.,
Ψ = 8), fluid friction irreversibility dominates and entrop
generation number rapidly increases withY .

The influence of heat-generation or absorption param
(H) on entropy generation number is presented in Fig
for the symmetric, and in Fig. 11 for the asymmetric therm
boundary conditions. For the symmetric case (see Fig.
entropy generation distribution is still characterized by n
concave shaped profile. Heat transfer has no contributio
entropy generation atH = 0 (∂T /∂Y = 0 everywhere, se
Fig. 6), showing minimum entropy generation rate (co
pared to the profiles of otherH ). Heating of the fluid (pos
itive H) shows higher entropy generation rate than
cooling of the fluid (negativeH ). At a particularY , en-
tropy generation rate is higher for higher value ofH (ab-
solute value). This scenario becomes complicated for as
metric thermal boundary condition (see Fig. 11) due
the complex nature of velocity and temperature distri
tion patterns. For allH , profiles intersect approximate
at Y ≈ 0.6. ForY < 0.6, entropy generation rate is high
for lower value ofH and opposite scenario is observ
for Y > 0.425.

Influence of Hartmann number(M) on the entropy
generation profile is shown in Fig. 12. The parameterM

is not too much dominating on entropy generation. A la
variation ofM causes a small variation in the rate of entro
generation. Fig. 13 shows the influence ofGr/Re on the local
entropy generation rate.
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8. Numerical calculation

To conduct a numerical analysis we used the techn
similar as Hortmann et al. [24] based on the Finite-volu
method as described in Ferziger and Peric [25]. The solu
domain is first subdivided into finite number of control vo
umes (CV). Body fitted, non-orthogonal grids are oriente
such a way that the number of CV is higher near the wa
All variables are calculated at the center of each CV (n
staggered scheme). SIMPLE algorithm is used. Stone’s
solver [25] is used to solve the system of discretized eq
tions. Details about numerical calculation are avoided.

For a particularGr/Re andM, field values ofu-velocity,
v-velocity, and temperature are calculated numerically u
Eqs. (5)–(8). Then using Eq. (22), local values of entro

Fig. 14. Average entropy generation number at differentGr/Re.

Fig. 15. Distribution ofα0 as a function ofGr/Re at differentM .
generation numbers(NS) are calculated and then integrat
over the volume of the channel(∀) to get the volume
averaged entropy generation number(NSav) as follows:

NSav=
∫
∀
NS d∀ =

X=1∫
X=0

Y=α∫
Y=0

Z=1∫
Z=0

NS dX dY dZ (29)

For a range of aspect ratio(α) of the channel, there exis
a particular value ofα (= α0) where entropy generatio
(irreversibility) become minimum. The corresponding va
of minimum entropy generation is symbolically expressed
NSav,min, which is a function ofGr/Re andM. For numerical
calculation, internal heat generation and/or absorptio
assumed to be negligible.

Fig. 14 shows the distribution ofNSav/NSav,min as a
function of α at differentGr/Re for a particular value o
Hartmann number(M). For a particularGr/Re, average
entropy generation decreases with an increasingα, shows its
minimum at particular value ofα (= α0), then increases with
further increase ofα. The geometric parameter,α0, is plotted
in Fig. 15 as a function ofGr/Re at different Hartmann
number. The linear nature of theα0 − Gr/Re profiles in
logarithmic plot enable us to construct a correlation in
following form:

α0 = 6.32581× (M)0.223384×
(

Gr

Re

)−0.11779

(0.1�M � 10 and 0.1� Gr/Re � 10) (30)

The above correlation shows good agreement with
numerical calculations within±5% accuracy.

9. Conclusion

Analytical expressions have been developed for velo
temperature, and entropy generation number for mixed
vection flow in a vertical channel under the action of tra
verse magnetic field. Only isothermal boundary conditio
considered with symmetric and asymmetric temperature
the walls. With symmetrical temperature at the walls, p
files for velocity, temperature and entropy generation nu
ber show symmetrical nature. Symmetricity of these profi
is distorted for asymmetrical thermal boundary conditi
Both walls act as strong concentrator of irreversibility due
high velocity and temperature gradients. Group parame
have significant effect on entropy generation rate. Hig
value of group parameter causes higher entropy genera
For positive value of heat generation/absorption param
entropy generation rate is higher than the negative valu
same magnitude. Based on the numerical calculation, a
relation is proposed which can calculate a geometric p
meter(α0) at which value irreversibility is minimum.
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